

Quality Assurance Charting for QC Data

September 2018

Iowa's Environmental & Public Health Laboratory

Copyright the State Hygienic Laboratory at the University of Iowa 2017. All rights reserved. Images may be subject to copyright.

Agenda

- Introduction
- Pre-Quiz
- Key Practices
- Post-Quiz
- Questions

60 Minute Schedule

- Introduction 5 min
- Pre-Quiz 5 min
- Key Practices
 - Standard Work 20 min
 - Quality Control 15 min
- Post-Quiz 5min
- Questions (10 min float)

Introduction

Mark Pendergast

- 15 years as an analytical chemist
 - GCMS, HPLC, Nutrients
 - Microscopist
- 2015 to Present
 - Manager, Quality Systems
 - Advisor to SHL Director
- Contact Information
 - <u>Mark-pendergast@uiowa.edu</u>
 - 319.335.4236

- 1. DOC
- 2. MDL
- 3. LRB
- 4. LFB
- 5. MS/MSD
- 6. ISTD
- 7. CCV
- 8. Control Charts
- 9. Corrective Action
- 10. QC Acceptance Criteria
- 11. Definitions
- 12. Minimum Frequency for QC

- 1. DOC
- 2. MDL
- 3. LRB
- 4. LFB
- 5. MS/MSD
- 6. ISTD
- 7. CCV
- 8. Control Charts
- 9. Corrective Action
- **10. QC Acceptance Criteria**
- 11. Definitions
- **12. Minimum Frequency for QC**

Process

Measurement Process

Quality Assurance of Chemical Measurements – John Keenan Taylor

Meet the needs of the users

- Satisfactory
- Adequate
- Dependable
- Economic

40 CFR 136.7

The permittee/laboratory shall use suitable QA/QC procedures when conducting compliance analyses with any part 136 chemical method or an alternative method specified by the permitting authority. These QA/QC procedures are generally included in the analytical method or may be part of the methods compendium for approved Part 136 methods from a consensus organization. For example, Standard Methods contains QA/QC procedures in the Part 1000 section of the Standard Methods Compendium. The permittee/laboratory shall follow these QA/QC procedures, as described in the method or methods compendium. If the method lacks QA/QC procedures, the permittee/laboratory has the following options to comply with the QA/QC requirements:

12 Elements

40 CFR 136.7

- Use suitable QA/QC procedures
- Standard Methods contains QA/QC procedures (part 1000)
- The permittee/laboratory shall follow these QA/QC procedures, as described in the method or methods compendium.
- If the method lacks QA/QC procedures, the permittee/laboratory has the following options to comply with the QA/QC requirements:
 - 12 Elements

Standard Method 1020 B.

Include in each analytical method or SOP the minimum required QC for each analysis.

14 Elements

Control Charts

- Present a graphical Record over time
- Demonstrate Statistical Control
- Detect changes in analytical process
- Accuracy & Precision of the test

Control Charts for Individuals

- Often based on single QC result per batch
- Accept or reject that batch may depend on this one result

Control Chart Types

- Accuracy (means) chart
- Precision (range) chart

Accuracy (means) chart

 The accuracy chart for QC samples is constructed from the average and standard deviation of a specified number of measurements of the analyte of interest.

- Reagent blanks
- LCSs
- Calibration check standards
- LFBs
- LFMs
- Surrogates

Accuracy (means) chart

- Set up using calculated values for:
 - Mean & standard deviation or
 - Percent recovery (if concentration varies)
- Construct a chart for each analytical method
- May need to be matrix specific
- Enter each time QC sample is analyzed
- Re-calculate standard deviation ~20-50 results

- Mean & standard deviation or
- Percent recovery (if concentration varies)

QUALITY ASSURANCE (1020)/Quality Control

Hand Out – Accuracy Control Chart

- 1. Plot 10 data points along X axis using % recovery data displayed (next slide)
- 2. Plot Average
- 3. Plot Warning Limits (2x standard deviation)
- 4. Plot Control Limits (3x standard deviation)

Note: Excel will be displayed during this process

Calculate Average & Plot

Х	У
1	96
2	103
3	92
4	85
5	101
6	
7	
8	
9	
10	

- 1. Calculate Average = sum of y / # of data points
- 2. Plot as straight line on your chart

Standard Deviation

Warning Limit & Plot

Х	У
1	96
2	103
3	92
4	85
5	101
6	
7	
8	
9	
10	

- 1. Calculate Warning Limit = 2 x Standard Deviation
- 2. Add to average as high WL
- 3. Subtract from average as low WL
- 4. Plot both straight lines across your chart

Control Limit

Х	У	
1	96	
2	103	
3	92	
4	85	
5	101	
6		
7		
8		
9		
10		

- Standard Deviation = 7
- 1. Calculate Control Limit = 3 x Standard Deviation
- 2. Add to average as high CL
- 3. Subtract from average as low CL
- 4. Plot both straight lines across your chart

Plot next 5 data points along X axis using % recovery data displayed

Х	У	
1	96	
2	103	
3	92	
4	85	
5	101	
6	120	
7	122	
8	115	
9	112	
10	113	

Plot next 5 data points along X axis using % recovery data displayed

Х	У
1	96
2	103
3	92
4	85
5	101
6	120
7	122
8	115
9	112
10	113

Points 6 to 10 are now using the WL & CL set by points 1 to 5.

Recap– Accuracy Control Chart

- 1. Plotted 10 data points along X axis using % recovery data displayed
- 2. Plotted Average
- 3. Plotted Warning Limits (2x standard deviation)
- 4. Plotted Control Limits (3x standard deviation)
- 5. Compared daily QC value to WL & CL

- Constructed from average and standard deviation of a specified number of measurements.
- Replicate & Duplicate analysis
- %RSD or relative percent different (RPD)
- Baseline is set at zero
 - Only upper WLs & CLs

- Baseline is set at zero
- Only upper WLs & CLs
- Duplicate

Figure 1020:2. Duplicate analyses of a standard.

Duplicate analyses of a standard (easier):

Figure 1020:2. Duplicate analyses of a standard.

Duplicate analyses of samples (variation in sample concentration)

A CONTRACTOR OF CONTRACTOR OF

Precision (range) Control Chart

- Duplicate analyses of samples (variation in sample concentration)
- Relative Percent Difference (RPD)

$$\% RPD = \frac{|(sample - duplicate)|}{(sample + duplicate)/2} x 100$$

Normalizes the data

• Duplicate analyses of samples (variation in sample concentration)

Plot 5 data points on the Precision Chart using %RPD data displayed

Х	У
1	22
2	10
3	14
4	18
5	20
6	
7	
8	
9	
10	

Calculate Average & Plot

Х	У
1	22
2	10
3	14
4	18
5	20
6	
7	
8	
9	
10	

- 1. Calculate Average = sum of y / # of data points
- 2. Plot as straight line on your chart

Standard Deviation

Х	У
1	22
2	10
3	14
4	18
5	20
6	
7	
8	
9	
10	

1s & Plot

Х	У	
1	22	
2	10	
3	14	
4	18	
5	20	
6		
7		
8		
9		
10		

- 1. Calculate 1s= Standard Deviation + Mean
- 2. Plot straight line across your chart
- 3. Label line as 1s

Warning Limit & Plot

Х	У
1	22
2	10
3	14
4	18
5	20
6	
7	
8	
9	
10	

- 1. Calculate WL= 2 x Standard Deviation + Mean
- 2. Plot straight line across your chart
- 3. Label line as WL

Control Limit & Plot

Х	У
1	22
2	10
3	14
4	18
5	20
6	
7	
8	
9	
10	

- 1. Calculate CL= 3 x Standard Deviation + Mean
- 2. Plot straight line across your chart
- 3. Label line as CL

Plot next 5 data points along X axis using % RPD data displayed

Х	У
1	22
2	10
3	14
4	18
5	20
6	23
7	24
8	28
9	25
10	23

Plot next 5 data points along X axis using % recovery data displayed

Х	У
1	96
2	103
3	92
4	85
5	101
6	120
7	122
8	115
9	112
10	113

Points 6 to 10 are now compared to the 1s, WL, & CL set by points 1 to 5.

Recap -Control Charts & QC Limits

- 1. Percent Recovery (unknown compared to known)
- 2. Relative Percent Difference (duplicate samples comparing two values)
- 3. X Control Chart

Control Charts & QC Limits

X Control Chart

- 1. Mean (establish from 20 data points)
- 2. Warning Limits (2 standard deviations)
- 3. Control Limits (3 standard deviations)

Control Charts & QC Limits

Control Limits

- Control charts utilize a central line to define and provide the best estimate of the variable plotted.
- Control limits define the bounds of virtually all values produced and in statistical control.

Control Charts & QC Limits

- Standard deviation is only an estimate based on limited data.
- Represents the spread around the mean. Is used to establish control of a measurement.

QC Frequency

Follow your method requirements

If in doubt contact lab certification program

At the 95% confidence level, on average:

- 1 out of 20 exceed the WL
- 1 out of 100 exceed the CL

What to do to examine apparent out-ofcontrol changes in method performance?

What to do to examine apparent out-ofcontrol changes in method performance?

- Tradeoff
 - Missing a change in method performance (false negative)

What to do to examine apparent out-ofcontrol changes in method performance?

- Tradeoff
 - Missing a change in method performance (false negative)

VERSUS

 Investigating and acting on an apparent change in method performance when nothing actually changed (false positive)

Guidelines from Standard Methods:

- Control Limit
- Warning Limit
- Standard Deviation
- Trending

Review Accuracy Chart

- Control Limit if 1 measurement exceeds the CL, repeat the analysis immediately.
- If the next sample:
 - within the CL, continue
 - exceeds the CL, discontinue analyses and correct the problem.

Review Accuracy Chart

- Warning Limit if 2 of 3 successive points exceed the WL, analyze another sample.
- If the next sample:
 - within the WL, continue
 - exceeds the WL, evaluate bias and correct problem

Review Precision Chart

- Standard Deviation if 4 of 5 successive points exceed 1s, or are in decreasing or increasing order, analyze another sample.
- If the next sample:
 - Less than 1s, or changes order, continue
 - Otherwise correct the problem

Review Precision Chart

- Trending 7 successive samples are on the same side of the central line
 - Discontinue analyses and correct the problem

Remember Tradeoff

Missing a change in method performance (false negative)

VERSUS

 Investigating and acting on an apparent change in method performance when nothing actually changed (false positive)

- Improvement in method precision
 - Never exceed WL
 - Recalculate WL & CL using 10-20 most recent data.
 - Trends in precision can be detected sooner if running averages of 10-20 are kept
 - Trends indicate systematic error
 - Random error is revealed by random exceedance of WLs & CLs.

Corrective Action

Document

Record of action relating to non-conforming event (NCE)

Next Steps

Plan, Do, Check, Analyze

- 1. Review your policy, process, procedure, and forms
- 2. Improve and Repeat

QUESTIONS?

Acknowledgements

- CFR
- Standard Methods
- Quality Assurance of Chemical Measurements John Keenan Taylor
- CLSI QMS11-A Management of Nonconforming Laboratory Events; Approved Guideline

