Basic Laboratory Techniques

Dustin May
State Hygienic Laboratory
University of Iowa

Outline

- Stoichiometry
- Volume Measurements
- Mass Measurements
- Statistically-Derived Detection Limits
- Laboratory Safety
- Laboratory Record Keeping

Stoichiometry

- Relationship between reactants and products
 - Quantitative, based on conservation of mass
- Units are important
- Atoms, moles, mass

Factor	Prefix	Symbol	Examples					
109	giga	G	1 Gm = 1 gigameter = 10º m 1 Gb = 1 gigabyte = 10º bytes					
10⁵	mega	М	1 Mm = 1 megameter = 10º m 1 Mb = 1 megabyte = 10º bytes					
10³	kilo	K	1 Km = 1 kilometer = 103 m 1 Kg = 1 kilogram = 103 g					
10-1	deci	d	1 dm = 1 decimeter = 0.1 m					
10-2	centi	С	1 cm = 1 centimeter = 0.01 m					
10⋅3	milli	m	1 mg = 1 milligram = 0.001 g 1 ms = 1 millisecond = 0.001 s					
10-6	10-6 micro		1 μm =1 micrometer = 10 ⁻⁶ m 1μs = 1 microsecond = 10 ⁻⁶ s					
10-9	nano	n	1 ns = 1 nanosecond= 10 ⁻⁹ s					
10-12	pico	р	1 pg = 1 picogram = 10-12 g					

http://www.webassign.net/question_assets/tccgenchem2l1/measurements/images/figure2.png

Stoichiometry

- Mole
 - Representation of the number of atoms or molecules of an element or compound
 - 6.022 x 10²³ atoms/molecules
 - Often abbreviated mol
- Molar mass = average mass of one mole of a element or compound
 - Takes into account different isotopes of an element
 - Ex. Sodium (Na) = 22.99 Da (g/mol)
 - Ex. Ammonium chloride (NH₄CI) = 53.50 Da

Stoichiometry

- Solute = Minor component of a solution
- Solvent = Major component of a solution
- Molarity = moles of solute/total volume, in liters of solution
 - Ex. 15M Sodium hydroxide (NaOH) = 15 mol/L NaOH = 600 g/L NaOH
- Normality = mole equivalents of the component of interest
 - Ex. 1M H₂SO₄ = 2N H₂SO₄ where H⁺ is the component of interest

Example

- How much solid Sodium nitrate is required to prepare 500 mL of a 2M solution of Sodium nitrate?
 - Sodium nitrate = NaNO₃
 - Molar mass = 22.99 Da (Na) + 14.01 Da (N) + 16.00 Da (O) x 3 = 85 Da = 85 g/mol
 - 2 mol NaNO3 = 170 g NaNO3
 - 500 mL / 1000 mL/L = 0.5 L
 - Mass Required $(g) = \frac{2 \, mol}{1 \, L} \times \frac{85 \, g}{mol} \times \frac{0.5 \, L}{1} = 85 \, g \, NaNO_3$

Example 2

- How much 14.8 M Ammonium hydroxide (NH₄OH) is required to prepare 2 L of a 6 M Ammonium hydroxide (NH₄OH)?
- $\bullet \ M_1 V_1 = M_2 V_2$
 - Solution 1 is 14.8 M NH₄OH
 - Solution 2 is 6 M NH₄OH

•
$$V_1 = \frac{M_2 V_2}{M_1} = \frac{6M NH_4 OH \times 2L}{14.8M NH_4 OH} = 0.810 L of 14.8M NH_4 OH$$

Volume Measurements

- Three main devices
 - Pipets
 - Volumetric Flasks
 - Graduated Cylinders
- Different grades of glassware
 - Generally see Classes A and B
 - Class A glassware is meets tighter accuracy tolerances than class B
 - Methods often specify acceptable classes of glassware
- To Contain vs To Deliver
 - TC vs TD or Blowout
- Do not bake volumetric glassware!

Volumetric Measurements

- Reading a meniscus
 - Glassware is designed to be read at the minimum of the curve
 - Meniscus needs to be level with the eye
 - If the meniscus is in between markings, interpolation is encouraged

https://calaski.files.wordpress.com/2015/09/me niscus.jpg

Mechanical Pipettes

- Two techniques
 - Forward pipetting
 - Collect solution from first stop, dispense to second stop
 - Standard technique for most solutions
 - Reverse pipetting
 - Collect solution from second stop, dispense to first stop
 - Alternate technique for viscous or foamy solutions

Pipetting position (e.g. when using a 1-10 ml pipette)

 Pipette held vertically, tip immersed about
 cm into the liquid. Pipette held vertically, tip immersed about
 cm into the liquid. 3. Pipette held at a 30-40^o angle, tip immersed about 3-4 cm into the liquid.

Mechanical Pipettes

- Should be checked for accuracy and precision quarterly
 - ISO 8655 Standard provides limits
 - Checks need to be documented
- Cleaning and maintenance as needed
- See Finnpipette Finntip Good Laboratory Pipetting Guide

https://www.labdepotinc.com/admin/uploads/scilogex-micropette-plus-single-channel-713111087.jpg

Mechanical Pipettes

- Pipette checks and calibrations can be done by a commercial vendor or your lab
- Can be tracked in excel
- Can be somewhat complicated

1 A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U
	1st Quarter (January-March)																			
Date	e User	Temp. (°C)																		
			(mmHg)	(g/mL)		Comm	nents													
3/2/2	018 tirado	23.0	758	0.998																
Pipett				2nd Mass	3rd Mass	4th Mass				8th Mass							Maximum		Evaluation	Comments
	Range	(μL)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	Mass (g)	Mean	Absolute	Deviation	Permissible	Permissible		
														Volume	Variance	(µL)	Systematic	Random		
														(µL)	(µL)		Error (µL)	Error (µL)		
1	20-200 μL	20	0.0199	0.0192	0.0191	0.0200	0.0201	0.0184	0.0191	0.0193	0.0201	0.0197	0.0195	19.5373	0.4627	0.5620	1.600	0.600	Acceptable	
1	20-200 μL	200	0.2007	0.2009	0.2010	0.2000	0.2000	0.2004	0.2004	0.2001	0.1998	0.1996	0.2003	200.7762	0.7762	0.4712	1.600	0.600	Acceptable	
2	100-1000 μΙ	L 100	0.1015	0.1015	0.1021	0.1014	0.1023	0.1017	0.1021	0.1019	0.1019	0.1022	0.1019	102.1073	2.1073	0.3212	8.000	3.000	Acceptable	
2	100-1000 μΙ	L 1000	1.0033	1.0009	1.0026	1.0041	1.0017	0.9994	1.0003	1.0015	1.0019	0.9984	1.0014	1003.8408	3.8408	1.7410	8.000	3.000	Acceptable	
	0.5.0.5	500	0.5150	0.5159	0.5174	0.5161	0.5151	0.5166	0.5154	0.5156	0.5172	0.5152	0.5160	517.2024	17.2024	0.8665	20.000	7.500	Acceptable	
3	0.5-2.5 mL	500	0.5150	0.0100	0.0174	010101														

Mass Measurements

- Certified weights should be used for balance checks
- Balances should be calibrated at least yearly
- Balances should be checked everyday prior to use.
 - This should be done in the normal weighing ranges for which the balance will be used
 - i.e. If you are weighing 100 mL water samples, you want to check the balance at 100 g
- Balances should also be checked monthly across their range
- If a balance is moved or bumped, it needs to be rechecked

Mass Measurements

- Record of checks can be used to create tolerances
 - Standard deviation (σ) of previous year's checks
 - Mean $\pm 3\sigma$ to establish a working tolerance
 - Easiest to do in excel

			Day of Use B	alance Checks	
Year:	2018				
Balance Information			Weight Set Informat	ion	Comments
Model:	Mettler Toledo ML20	4	Model:	Troemner Set, Student Set	
Serial Number:	B506580417		Serial Number:	02288, Rad1	
Placed into Service:	2015-04-09		Calibration Date:	2015-06-16, Not calibrated	
Calibration Date:	2018-01-09		Recalibration Due:	2016-06, Not Applicable	
Recalibration Due:	2019-01				
Tolerance (g):	0.0003				
the previous year. Th		le can be found in M:	\Radchem\QAQC\ba	standard deviation, adjusted to 3σ, fr lance checks\history files. To be	rom
		Internal Calibration			
Date	Initials	Performed?	10 g Weight		Comments
	Average Mass (g)		10.0013		
7/9/2018	acarl	У	10.0010	okay	
7/10/2018	acarl	У	10.0013	okay	
7/12/2018	acarl	У	10.0011	okay	
7/13/2018	dmay	У	10.0012	okay	
7/16/2018	acarl	У	10.0011	okay	
7/17/2018	dmay	У	10.0013	okay	
7/18/2018	acarl	У	10.0012	okay	
7/19/2018	acarl	У	10.0013	okay	
7/20/2018	acarl	У	10.0012	okay	
7/23/2018	dmay	у	10.0010	okay	
7/24/2018	dmay	У	10.0012	okay	
7/31/2018	acarl	У	10.0012	okay	
8/1/2018	dmay	У	10.0012	okay	
8/6/2018	acarl	У	10.0013	okay	
8/7/2018	acarl	У	10.0012	okay	
8/9/2018	acarl	У	10.0011	okay	
8/10/2018	acarl	У	10.0012	okay	
8/13/2018	acarl	У	10.0012	okay	
8/15/2018	acarl	У	10.0012	okay	
8/16/2018	dmay	У	10.0012	okay	
8/17/2018	acarl	У	10.0011	okay	
8/20/2018	acarl	У	10.0012	okay	
8/21/2018	acarl	У	10.0013	okay	
8/23/2018	dmay	У	10.0014	okay	
8/28/2018	acarl	У	10.0013	okay	
8/30/2018	acarl	У	10.0013	okay	
8/31/2018	acarl	У	10.0013	okay	
9/4/2018	acarl	У	10.0010	okay	

- The method detection limit (MDL) is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results.
- Limit of Quantitation is ~3 times MDL. This should be less than you reporting limit.

- Initially, analyze 7 low-level spiked samples & 7 method blank samples
 - Calculate MDL for spiked samples and blanks
 - Select the greater of the two
- After the initial analyze two level spikes per quarter in which samples are analyzed for this method
 - Calculated MDL every year based on these spikes and the method blanks run routinely

$$MDL_S = t_{(n-1, 1-\alpha=0.99)}S_S$$

where:

MDL_s = the method detection limit based on spiked samples

 $t_{(n-1, 1-\alpha = 0.99)}$ = the Student's *t*-value appropriate for a single-tailed 99th percentile t statistic and a standard deviation estimate with n-1 degrees of freedom. See Addendum Table 1.

 S_s = sample standard deviation of the replicate spiked sample analyses.

$$MDL_b = \overline{X} + t_{(n-1,1-\alpha=0.99)} S_b$$

where:

 MDL_b = the MDL based on method blanks

 \overline{X} = mean of the method blank results (use zero in place of the mean if the mean is negative)

 $t_{(n-1, 1-\alpha=0.99)}$ = the Student's *t*-value appropriate for the single-tailed 99th percentile t statistic and a standard deviation estimate with n-1 degrees of freedom. See Addendum Table 1.

 S_b = sample standard deviation of the replicate method blank sample analyses.

- See EPA Document on MDL studies for further information
- https://www.epa.gov/sites/production/files/2016
 -12/documents/mdl-procedure rev2 12-13-2016.pdf

Chemical Safety

- Organization
 - Segregation of chemicals
 - Separate Oxidizing acids (ex. Nitric acid) from Flammable acids (ex. Glacial acetic acid) from mineral acids (ex. Sulfuric acid)
 - Bases should be stored separately
 - Flammable should be stored in a flammables cabinet
 - Oxidizers (ex. Bleach & Hydrogen peroxide) should be stored away from flammables and reducing agents
 - Store chemicals at or below eye level
 - Secondary containment for liquid chemicals

Chemical Safety

- Safety Data Sheets
 - Required by OSHA to have SDSs for every chemical in the lab
 - Must be manufacturer specific
 - Can be digital or hard copy
- Mark all chemical containers with date received and date opened
- Mind expiration dates, if chemical has no marked expiration, 5 years is a good labassigned option

Chemical Safety

Accident Preparation

- Spill Kits
 - Spill kits for various types of accidents
 - · Acid, base, formaldehyde
 - Silver shield gloves, do not breakdown overtime like latex or nitrile
- Safety Showers & Eyewash Stations
 - Should be checked at least monthly
 - Cannot be obstructed

Lab Dress

- Safety glasses or googles at all times in the lab
- Lab coats to prevent splashes
- Pants and non-permeable shoes
- Face shield and apron is there is a potential splash hazard
- Keep an extra change of clothes at work

- IF YOU DON'T HAVE A RECORD, IT DIDN'T HAPPEN!
- Records of reagent preparation and use
 - Log when a reagent was prepared, what chemicals were used (Manufacturer, lot #, etc)
 - Log what reagents were used in a particular test
 - Troubleshooting issues later
 - Tracking down contaminants

							Storage		Reagent Used		
Reagent Name	Prepared Date	Prepared By	Expiration Date	Reagents Used	Lot Number	Received Date	Conditions	Manufacturer	Expiration Date	P.O. #	Notes
Yttrium 3+ 18 mg/mL Carrier	2018-01-05	Ifloryance	2023-01-05	Yttrium III Oxide	A0366013	2016-04-01	room temperature	Acros	N/A	1001581091	
*	*	*	*	16 N Nitric acid	174595	2017-11-15	room temperature	Fisher	N/A	1001867148	
0.1 N Sulfuric acid	2018-01-09	acarl	2023-01-09	36 N Sulfuric acid	53232	2015-08-27	room temperature	EMD	N/A	N/A	
2N Aluminum nitrate	2018-01-09	dmay	2023-01-09	Aluminum nitrate nonahydrate	151052	2016-05-16	room temperature	Fisher	N/A	1001603180	
*	*	*	*	*	161788	2017-11-03	room temperature	Fisher	N/A	1001860383	
1.5M Sulfamic acid	2018-01-10	dmay	2023-01-10	Sulfamic acid	A0335345	2014-04-03	room temperature	Acros	N/A	UNK; opened 2014-04-25	
1M Ascorbic acid	2018-01-10	dmay	2018-01-17	L-Ascorbic acid	144594	2015-02-13	room temperature	Fisher	N/A	UNK	
3M Sodium nitrite	2018-01-11	dmay	2018-01-11	Sodium nitrite	A0312016	UNK	room temperature	Acros	N/A	UNK	
5N Hydrochloric - 0.05M Oxalic acid	2018-01-11	dmay	2023-01-11	12N Hydrochloric Acid	0000134217	2017-11-09	room temperature	Macron	N/A	0000701107	
*	*	*	*	Oxalic acid	044274	2005-03-15	Room Temperature	Fisher	N/A	UNK	

- Deviations from SOPs
- Lab accidents
- Unusual events that may affect testing
- Document instrument installation, maintenance, instrument functionality issues, decommissioning
- Log important environmental conditions
 - Time, temperature (ex. room temperature for BOD)

Biochemical Oxygen Demand, Standard Methods 5210B

OpenELIS Worksheet#	Date/Time In	Worksheet Creation Analyst	Incubator Temp. In (°C)	Date/Time Out	Other Analyst(s)	Incubator Temp. Out (°C)	
142866	2018-08-23 10:47	rderrig	20.31	2018-08-28 13:10	dmay	19.97	
	Reagent	Lot #/Prepared Date	Manufacturer/ Prepared By	Received Date	Expiration Date	Seed in Samples (mL)	
	Dilution Water	#3 -08/17/18 #4 -08/17/18	RAD RAD	N/A	N/A	N/A	
	Phosphate Buffer	2018-08-06	dmay	N/A	2023-08-06	N/A	
	Nitrification Inhibitor	A8166	Hach	2018-07-02	2023-06-08	N/A	
	Glucose/Glutamic Acid, 300 mg/L		Hach	2018-07-02	2023-03-07	N/A	
	Seeding Material	SHL SAMPLE	696706	N/A	N/A	2	

	Bato	h QC Results		Result Comparison Tool						
BOD Blank Results	CBOD Blank Results	Duplicate Results (RPD / Abs. Diff.)	G/GA Results	1st Result	2nd Result	RPD / Abs. Diff.	RPD UCL (>5 mg/L)	Abs. Diff. UCL (<5 mg/L)		
0.005		4.6%	91%	60.20	45.77	27.2% / 14.43	30.0%	1		
#N/A		#N/A	#N/A							
#N/A		#N/A	#N/A							
#N/A		#N/A	#N/A							
	DO/pH Meter Information									
DO Meter #1: YSI 51: 289, S/N VUW15118	DO Meter #1: YSI 5100, S/N 10E 101362. DO Probe #1: YSI 5905, S/N 10F 100339. DO Meter #2: YSI 5000, S/N 11B 100676. DO Probe #2: YSI 5905, S/N 05C1612. pH Meter: Oakton pH 2700, S/N 2151866. pH Electrode: Accumet 13-620-									

OpenELIS Number	Sample Information	pН	BOD or CBOD?	Sample Type	Sample Volume (mL)	BOD Bottle Number	Initial D.O. (mg/L)	Final D.O. (mg/L)	D.O. Depletion (mg/L)	Dilution BOD (mg/L)	Use Dilution?	Dilution Result (mg/L)	Final Result (mg/L)	Final Result Override (mg/L)	Date/Time In Override	Comments
Blank1	N/A	N/A	BOD	Blank	N/A	2A	8.26	8.26	0.00	N/A	Y	0.00	0.01		2018-08-23 08:15	
Blank1	N/A	N/A	BOD	Blank	N/A	3	8.32	8.31	0.01	N/A	Υ	0.01			2018-08-23 08:15	
Seed Control	N/A	N/A	BOD	Seed Control	4	4	8.29	7.18	1.11	83.25	Y	83.25	81.38		2018-08-23 08:15	
Seed Control	N/A	N/A	BOD	Seed Control	4	5	8.28	7.22	1.06	79.50	Υ	79.50			2018-08-23 08:15	
Seed Control	N/A	N/A	CBOD	Seed Control	4	6	8.29	6.93	1.36	102.00	Υ	102.00	100.50		2018-08-23 08:15	
Seed Control	N/A	N/A	CBOD	Seed Control	4	11A	8.24	6.92	1.32	99.00	Υ	99.00			2018-08-23 08:15	
G/GA Standard	N/A	N/A	BOD	G/GA Std	3	18	7.86	3.71	3.61	361.00	Υ	361.00	358.67		2018-08-23 08:45	
G/GA Standard	N/A	N/A	BOD	G/GA Std	3	21A	7.87	3.72	3.61	361.00	Υ	361.00			2018-08-23 08:45	
G/GA Standard	N/A	N/A	BOD	G/GA Std	3	21	7.86	3.78	3.54	354.00	Υ	354.00			2018-08-23 08:45	

Documentation Biochemical Oxygen Demand, Standard Methods 5210B

- Records of analysis
 - Who did what and when
 - Quality Control
 - Supporting information (ex. pH for BOD)
 - What was reviewed,
 - Lots of other information

RIO	Biochemical Oxygen Demand, Standard Methods 5210B											
	Review & Release Checklist		Analyst	Reviewer								
1	Check to ensure that the dates for set-up and final readings, analyst initials, temperature and air pressu	ire are entered.	V	~								
2	Ensure that DW Blanks have acceptable depletion (≤ ±0.20).		V	7								
3	Ensure that the sample information is entered correctly.		7	7								
4	Ensure that there is a depletion of 2.00 mg/L or more and a remaining DO of 1.00 mg/L or more. If mor dilution meets this requirement, average the results. NOTE: If the depletion for a 250 mL dilution is les mg/L, report as <2.		V	7								
5	Ensure that the Started Date entered into OpenELIS matches the In date in the workbook and both the analysts are listed as having completed the analyses.	In and Out	V	V								
6	Ensure an approximate pH has been recorded in the spreadsheet.		V	V								
6	Ensure that all BOD results are correctly reported in OpenELIS (rounded to integers with no more than figures). Note: PT providers request 3 significant figures for reporting.14.3. When more than two dilut sample are far apart is the relative percent difference (RPD) between the two results are greater than t Control Limit (UCL) for the previous 20 duplicate samples? If so the higher of the two results is reporte is qualified.	ions of a single he Upper	V	V								
7	Ensure that comments/QA Events are entered as appropriate (e.g. If a larger sample amount has a sign in BOD, etc.). A list of BOD-specific QA Events and descriptions of when to use them is located at M:\\C_Nutrient_Demand	ificant decrease	V	V								
8	Final report was reviewed.			7								
9	Release the samples in OpenELIS, and initial and date the Review/Release Checklist.			V								
Comme	nts	142	866									
		User	dmay	acarl								
<u></u>		Date	8/28/2018	8/30/2018								

- Documentation is important
 - Can you remember exactly what happened? One week ago? One month? Five years
 - You need proof, generated at the time not retroactively
 - No one is going to just take you word for it.

Time for a Quiz!

Questions?

Dustin May dustin-may@uiowa.edu

